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FIJNDAMENTALS OF PLASMA SIMULATION

David W. Forslund
Applied Theoretical Physics
Los Alamos National Laboratory
Los AlaImJs, NCW Moxiro 87545

.411STRACT. k’~’ithth~ ircrm.sing size and speed of modern sup~rcomputcvs, the
incredibly complex nonlinear properties of plasmas in the laboratory and in space
arc being successfully explored in increasing denth. Of particular importance have
bcwn numerical simulation techniques involving finite size particles on a discrete
mesh. After discussing the importance of this means of understanding a varict~ of
nonlinear plasma phenomena, we describe the basic elcmcmts of particlwin-ccl] sim-
ulation and their limitations and ~dvantages. The diffcrencing technia,ues, stability
and accuracy issues, data management. and optimization issues arc discussed by
ll]rans of a simple example of a particle-in-cell code. Recent advances in simulation
methods allowing large space and time scales to k treated with minimal sacrifice in
physics arc rcvicwcd. Various examples of nonlinear processes successfully st.udi(’d
by plasma simulation will b- giwm,

1. Introdnct ion

The many degrees of freedom in plasmas Icads to an incrcdiole variety 01’pltisma
phcnomcrra on a spectrum of space and time scales. Nonlinear phenomena in plas-
mas are known to have many more diverse properties than even compressible fl~irl
dynamics. Various theoretical modck have horn drvclGpml tr) dmrribo thr ohsmvcd
plasma propcrt.im, but these, of necessity, rcq: ire ]]]arly ~ill)plifying assun)ptions
whose v~lidity is nliiny times qmwtionablc and dificult to verify. Although weal.
turbulcnrc theory has brcrr succmwful over a linlitcd range of p~ranwtrrs, frw
qucntly the nonlinearity of some pl~sma process is so strong that it breaks dowI:.
It is in this rcgiIl]c th~t plasma simulaticms are the most wmful and the emirst
to perform, III regimes whcr~ wrak turbulence thwmy is rmsonably accllrato, p~r-
ticle bimu]ation is t.h(~ most cxpcnsivr and difficult to Imrform. ‘l%u~ t)mrc has
bmm con~idcrablc corrl~)lt!lrlcl]ttirity bctwccn weak turbulence theory and pl&YIIIa
sjllllll~ltj~l], W.IC]I ]Iavjllg its OWrl dOri)ail) of impOrtaim!.

l~or moro 1)11:111I5 y( iiH t hc sil]nllntilm of pltisma phwmrrronn on Itirgc wtilr
ronll)utvrs II;Is pliIyd ~n ilt]porl:lni rol~ in t’x])!tlinill~ lllilll)’ olwrwd ])lllslllit phc-
nmtwnir iIu(lill v(’rlfyitlg or disl)rovitl~ vnrious Ilonlin(wr plasinti thwrics. ‘I*II(’l~rgr



variation in t,imc and spare scalm prrscnt in tyl]ic;ll p]nsrna prohlcms has contin-
ued to present a challcngc to the simulat. ionist,. Today, as compulcrs COIIIinur m
increase in size and speed the nonlinear plasma p;oblerns that can bc studied on
the computer have become even more realistic. As an introduction LOcomputer
simulation techniques of plasmas, wc will review the basic methods and illustrate
their use on prokdems of significance.

2. Basic Equations

2.1 Liouvillc Equation

The equations usually used to dc.srri})c a plasma arr NmvtorI’s law’s and MtiXWrII-S
equations:

q _
%. (~ + !!]...+)

dt - m,

(1)
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A!rrmst all classical plasri;a phvsirs iiwolvrs thr solving of tl;rsr rqual ions wit]]
various approximations, ‘1hr ~~nnlltaneou~ solution of thcsr cqualions [or a large
colhwtion of p~rticlos is equivalent to thr solution Of the Liouvillc rquat ior] for t IIVN
body distrib,,tion funclion. So]ulit]ns to Lhcso rquht ions cxhil)il collision); ll rllvrls
Mmrrnined by tllr ~tructurc of thr h functions in 1110almtic (~(lliiit ims. l,!sllil]l)’
onc speaks of a plasrIIH M tlaving H hwgc llull~l)or of particlwi prr l)cbyv s]~llrrv, ill
which case only terms to the Iowcst order in thi~ plmsni~ pitramctor arc krpt.

2.2 Vlasov Equntkms

In thi~ m-dli~icmluw limit, wc have the
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Although much successful effort has gone into solving Eqs. (2) for tile distribution
function directly [Sakanaka, et al., ~971; f?enauit, J972], the methods have been
difficult or expe.nsivc to extend to 2 dirnensicms. The traditional form of plasma
simulation If?ufternan, J967j involving particles is equivalent to solving the V]asov
equation by the method of characteristics, where the particle orbits are the charac-
teristics of the \’lasov cqualio]; t Since t.hc particles have finite size, howmwr, they
exhibit properties of the original Liouville system from which the VIEMOVequation
is drriv~d. Consequently, plasma simulation codes exhibil. many kinetic proper t.ics
of plasmas including brermst.rahlung, collisional excitation and damping of plasma
waves. \3’ith care one can study these phenomena directly with a simulation code,
Ilowever, usually the collisions are not desirable, so one must take care to redun
tl]rm .

2.3 Ccnoral Met.hods

To solvr Eqs. (2) one must rrprescnt the spatial ccmrdinatc as a discrct.r grid and
advirncr the equations over discrete time intervals or steps. Stability and ii(~l]ril~~
con(lit ion:; dictate lhc choice of the space and t inlc steps. Early n]ct hods in OIIC
dinwnsion treated particles as poinls moving through carh ot!]cr. However, bt?calJsc
onr rannot have as many particlm pm Drbyv spbcrr ill thv computm as OIIC has
in IIIOSI plasmas, this method rmults in ;III rxccssivrly high noiw ICWPI(and hcncc
collisicmal hwcl). To reducr this ]Jroblcrn, part iclcs arr nlado to lx’ of finite sizv
and to dcpmit in forrnfition onto and take information from a grid. III other worcis
I.hc 4 functions of Eqs. (1) arc rn~dc finit.r in width. ‘f’his drastically drcrcastw
the Iloisc love] by significantly altmring the collisional procw;s. l’tirt irk 110 !ongm
undprgo Iargr ang]c co]]isions fr’Jm a C]OSC’approach but rxpvriw)ce only small
ill]~l~ collisions as they pass through onc wmthrr. As a conscqucnrr, the finitr size
p;lrtirlc simulation rncthod is nmst suitm] for st udyillg collisionlms plasln:is. in t his
limit collisions can lW added Imck ill a col]t rollrd Il]tinm’r. To thr lmwIsl ord[’r then
ot)r ran vimv thr ptirt. iclo-in-ccl] simulation tcchniqur M a Nlm]tv Carlo w)lut ion
to thr Vlnsov rquatlion by illtcgr~l ion tilong its ch~rartcristics. ‘1’his NIOIIIC(~iir!o
aspwt (,f the solution illustrallcs why problcrns that, arc sensitive to the bchiivior of
])iirt iclcs in a ~mal] region of velocity Hp~cc arc difiirult to handle. l’roblrms that
depend I)ril]liirily WI t,hc bulk j)lils]]]~ properties, illkit high nmilincar, art’ I]mst
rwdity solved by this technique.

m} wdutiorl tO Eqfi, 2 are obtairmd by intcurating in a series of di~cretc
t itm’ st.cps tlw orbitR of a lurgv nurnl.wr of finito siz~ chargwi purtirlw+ (1y;)icfilly
104 10’’). 1’1](’lii~run~ihrl positions of tlw part i(los arc Uw’d to dqmsit thr ~hilrg~
illl(l rurrrtlts 01110 tho iixwl disrrotc grid, ‘1’hv firld w,unl ions ~rr t hcn Nolvcd on

\
this disrrrtlc grid typictrlly 10:’ Iofi rolls) to 01)1ilil) !11(’s(’lf-[.oil~isll[’llt Iivlds for t Ilr
nt’xl t.il]w SIV]J, T ](’disrrc{c Iirtd points ~ru t Iwll illt mpolti(wl to forli~ h ronl illutm~



field variable to advance the particle orbit. The two important nurmwica! aspm[s
are the sipacc and time difhwncing and the intcrpoltition of the Ii(*Idsfrolll the grid
tu the particle and the partirlc chargo onto the grid (i.e. the ~hapc of t ho part irlc).
A variety of techniques havo been rmployed successfully and I will discu~s only a
few.

3. A One Dimensional Electrostatic Code

Xl Bask Equations

To clarify the preceding general introduction, let us consider what is involved in
writing a simple one dimensional ehwtrmlatic plasma simulation code. AR an intm-
esting generalization of the usual one dimensional code W’ consider thr equal i:ms
for a spherical p!asma and include the cam of a space and Lime varying grid on
which the equations are solved. The basic equations to be solved are:

Id
—-r2EF = 4zp

~ dr

In Eq. (4) 1 is the angular momentum of the part iclc and the addil icmal tcrrn in
the momentum equation is the cent.rifugal force.

%2 Space and Time D! ff’ercnclng

Wc begin hi first dirxuusing the ~patial difhnncing for threw rquat ion~. Tho
rrmthod wc dmcribr here is a ~irnpliftml am’ dimmiionut form of that uwxl in thr
new two dimensional code, CIH.H’l’Et dcvclop~d by I.lrackbill and 14mlund. W’(’
ccmsidcr a set of N rncrnh points, r(l),. ,,,

II
r N), that ddinc thr cdl rrnt crH. Thww

point~ ran bc arbitrarily spuced altlmugh t c I ate of change should bc smmll COIII-
parcd to the cell size in order for the di~crcncing to be reasonably accurate. Wr
first consider how to deposit ch~r c onto this grid, a~ shovm in Eq. ((J), in order
to Ko!vc l%iwmn’~ rquntion, I’;q. !J3 . TIN nimplc~t prawdurc i~ to con~ikr the
particlea to have zero size and to eposlt all of the charge onto the grid point
that is clowat to the purticlc. Thin procedure iH known as the nearest grid point
(NGP) method. Although ~imple, it in{rodumw Iargr flurtuntiom on thr Hcalc of’
thr grid point spwing as t.hc p~rticlcs mow’ fron] grid poiut to grid point, Threw
flurtmtionm are M form d’ rolli~ion~ m rncn[ ionwl in S(WIion 2, lrwtmid wc ~itkv
thv piwtir]m to hv of flnitc Him tind dq)()~h rh~rgc 011 thv ~rid in propurt ion to
the ovcrhip of ttm p~rticlv with with roll. All bough R vtirioty of p,lrl irlv Him ~lrr
pOHIIibh!J hI?l@J?l (I)ld l~iTdAW// I ~f)?f~ hilvi.’ H) IOWII th~t II ]NlrliCh! bh WlllpllrhlJ]{l



with the cell size introduces the least amount of numerical error. For simplicity
of calculation wc choose a partirlc to he the size of the cdl in which it is locatrd,
Since the grid spacing can vary with the index i, the particle size can change a%
it moves through the grid. Hcmwer, the chargr on a part irle does not change.
The shape Of the particle is dolined by the interpolation form~la to and from tlw
grid. For a uniform mesh a qaumian shape for the particle has also been used
successfully [Lin, et al,, f974.

We use logical or natural coordinates, ZP, to describe the position of the par-
ticles such that the cell index is given by:

i= integer (zl,). (8)

and the fractional part of z~, determines where in the cell the particle is located.
The weights applied to cells i and i + 1 are given by:

Wi+ 1 = 2,, - i,

Wi = l.O– Wi+l (9)

The particle position then ifi convqrtcd to physical coordinates by:
.

r~ ~ Wiri+ Wi+lrg+]. (lo)

Krcping the logical position instead Df the entirely equivalent physical one makes
it ea~ier to drtcrminr the cdl location of the partirle, The reverse procms is mor~
conlplicatml and is done only once pm time step, Similarly, the electric field, E,,,
used to advancr the part,iclc velocity is interpolated with the same wright functionx
from the grid, The time ccntcrcd arcelcration and particle position advancement
arc given hy:

(11)

whine the superscript j i~ the time step index. The quantity, we, ran bc calculated
from the conserved nnEular moment.um at any time. We then usc R rapid zero point
search to dctcrminc tlw nmv na{ ural roordinatc of the particle, 1’ . * part irle doe&
not change celln, thiH can be done with only onc itmntion. With this now natural
roordinatc, nmv values of u~i and Wi,l 1 rtre calculated and the charge is interpolated
onto the grid:

g, ‘= ~i + Wiqp
qi+ , Z qi+l “tu’i+l~p (13)

If dmircd the grid can IN movmi before this new natural coordinate of the particle in
ralrulatmd without int rmluring aIIy dif~u~ion into the Mystcm. Adding up W! chargo
from all thv parl iclm yicld~ t ho total charge at chrh grid point. m nolut ion of
l}oiwmn’H cquat.ion givm MJ 11 Mnd the time cyr.lc i~ ronlplctod.



ThesoluLion ofpoisson’s ~quation inoncdimension is simple. Indiff’menced
forin thccquation is:

(14)

The t~rm pr2dr is thr total charge in a cell calculated above. The ccl! cmtcred
electric field t.hcn is obtained by averaging the quantity r2E al the ccl] (’dges: ““

El= ((r2A5)t+]/2‘t(r2~)i- 1/2)/(r?+l/2+ ‘?-1/2) (15)

where ri+ ~12 =- (ri ● r,+ ,)/2. Boundary conditions are applied 1)s specifying E
at the edge of the first cell. Alternatively Poisson’s equation couid be written in
terms of the electrostatic potential and solvt-d with a tridiagcmal solvm and cntrr
difference to obtain E at the cell centers.

3.3 13mmdary CCmdil ions

An additional prO\J]em exists during the charge accumulation stage. f)lle to the
finite size of the particles, some charge will be deposited outside the grid from cells
at the edge of the system. An extra cell is added at each end to contain this charge.
T’. ? ch;, rge accumulated in these ‘ghost” cells is added back onto the physical grid.
In the Cartesian case one may also choose to have periodic boundary conditions,
in which case the charge would be added into the first real cells at opposite ends
of’ the grid.

Finally, the particles thcmsel /es must be checked for crossing of the system
boundaries so that they may be absorbed, reflected, or recreated at some ncw ve-
locity. These operations are done right after the new particle position is calculated
before the new natural coordinates arc calculat cd for rmlcposif it-m of charge onto
the grid,

This completes the basic description of a simpic on~ dime] Asional ektrostatic
code. The algorithms described above are readily extcndable to two dirmmsiors.
The appropriate cell size, time step, and number of particles t hat ne~d to be usrd for
any given problem is determined by numerical stability and accuracy considerations
discussed below.

3.4 Particle Loading

WC digress for H moment on how to load the part. iclcs with an arbitrary rfvnsity
distributio]l. ~U~JpcIse we have N simulation particles which we would Iikc to rcp-
rcscnt the initial arbitrary charge density, p(r). The probability of a particlr being
at the position r is given by

(16)

where r2 and rl iirv t hc upper and Iowcr lirnit~ of thr systcm. \l’(’ Cilll III(’1I
randomly pick a number P from O “-+ 1 for cart) simulat;oll particle at~d usc the
inw-mw function r(l)) to give the piirticlc position. ‘J?h~r~ iii Icss noise in the initial



loading. however,
charge assuciatcd

if one uniformly divides the interval O + 1 in-to lN parts. The
with each of the particles is

(17)

which, because of the small value of N, is much larger than the charge on an ion
or electron. That is, we see that each particlo here represents a collection of a
large number of ions or electrons and hence is sometimes called a macroparticle.
This loading technique is readily extemdablc to two dimensions for arbitrary two
dimensional density distributions and inay also be used for generating particle~
with some specified velocity distribution.

4. Data Management

~ypicall~ fo.’ large scale plasma simulations, rnodcrn computers do not have a
enough larg.’ memory to contain all of the par[ icle data. Since external storage
is usually slow compared 10 the fast memory in a modern supercomputer, a well-
tuned multi-channel input/output 1/0) pac!:age i6 needed to interface with this

\slow storage (usually disks). The astest method is nol always the best due to
the environment of other users on the machine and the algorithms used to charge
for cornputcr rmources, However, generall synchronous 1/0 (in which the 1/0 is

‘igoing on simultaneous with the computing on at leastone channel each for input
and output is rrquirm]. The sinlplcst form of 1/0 divides a buffer into three parts
doing input into 1/3, computing on 1/3, and output on 1/3. In a multi- chanm’1
method there may be separate buffer for irput and output. The package written
for WAVE code on the CRAY-X/MP computers issues mu!tiple simultaneous ljO
requests on each channel and packs the particle data in ordw to maximize the
1/0 rate for a given buffer size. An interrupt driven 1/0 scheme has not been
found to be fast enough to obtain data from the disk without missing revolutions
on the disks. Also available on some modern supercomput.crs is an interm~~diate
Rpeed memory dcvicc (the SSD on the CRAY- X/MP which is usually more than

Iadequate to keep up with the particle pushing. ln t is case a sophisticated 1/0
algorithm is not required,

S. Optirnimition

G.1 Vcctorization

Most modern supcrcomputcrs have very high speed vector performanrc compared
with their scalar performance. lt is important in the coding process to ensure
that the critical sections of the code are as vectoritied as possible. Within the
particle mover itaclf most of the operations are vectorizable. For example, in the
one dimcrwional vloctrostat.ir rodr dmcril)od above Kqs. (7), (8), 10), and (11)
are . omplctc vortorizablc. &llowrvcr, Imauso the CCIIindex is ran om from one
~:}~k ~{Jthe m’xt, thf’ intcrpnlation from and to the grid (Hq~, ({)) and (1 2))

. ‘1’Imc two parts need to be in rnopar~tc do lm~ps from the VCC{Imizablo



o])(’raliol]s to t-wsuro r])axillmi]l spccr.1. TIN*rlrrt ric ficlrl accumulai ion in Kq. ( ]3)
is also not vectorizahle.

On t hc CllAY-X/h4 P a new hardware instruction has been added which now
allows the interpolation of Eq. (9) to be completely vcctorized. However, the scai -
ter operation of Eqs. (12) remains non-wctorizable because of the accumulation.
Supercomputers which have this hardware gather-scatter and a fast vector sum
routine would allow complete vectorization of the particle mover.

5.2 # %]y Language

In the WAVE code the particle movers have been hand coded in assembly language
to make optimal use of the CRAY-X/MP. We find that both the vect,,r and scalar
operations arc ai)out twice as fast as they are in FORTRAN. This should always
be considered when lhe code is going to be used heavily with infrequent changes.
If a careful isolal ion of paramotcrs for the particle mover is done, the assembly
language code will not have tc be modified often even though the remainder of the
code may change a great de: With the WAVE code this modularity has allowed
the same azscmbly language .overs t.o be used for over 8 years on Lhe CR AY- 1
with msentially no changes, even t}lough the remainder of thl’ WAVE code has
been almost entirely rewritten.

6.s Multiprocessing

With the arriva! of multiple processors in supercomputers it is possible to reduce
the running time by processing more than onc group of particles at a time. This
does not reduce the CPU t:me of a given job (it actually increases it slightly) but
may reduce the turn around time when this is most important. However, care must
be taken because multiple groups of particles may try to access a shared piece of
memory at the same time. In particular, the charge weighting process may require
~cparate copies of the charge array for each task followed by a combining at the
end of the cycle to avoid overwriting data. Some computer hardware does allow
for a memory lock out when another processor is accessing the memory, hut this
still could result in some inefficiency. In the CELESTE code we hav~ sought to
overcome this problem by sorting the particles by means of linked lists. There is
some additional overhead for this, but it allow~ for complete separation of particle
pu~hing tasks. In addition, it allows for the inclusion of momvnturn and energy
conserving binary co!li~ions in a fully vectorized form.

6. Numerical Stability

6.1 Time Step Constraints

The discretizntion of time and space in simulation codes introduces accuracy and
stability cmulitions. In the usual explicit particl~ code in which information at
time Ievcl j is used to advance the fields and particles to j + ] thmc i~ a limit to
th~ size of the time step before the rode becomes unstable due to time aliiwing.
This is usually w@ <2. Therefore, one cannot avoid the electron dynamics in an
explicit plasma sl:nulation code by taking very iarge time steps, One must. have a
time step large wmugh to re~olvc the highest frequency in the syHtcm.



For elect romagrwtic. codes including the displacement current one has an ad-
ditional constraint that can bc even more severe. The timestep must sat My the
Courant condition, & < C6Z. Again this ari~es because of the necessity of resolv-
ing the highest frequencies in the system. Olher insl aljilities involving Cerenkov
processes have also been shown to exist[ God\rev, 1874,1975]

6.2 Finite Grid Irmtability

The aliases arising from the spatial grid are coupled together by the interpolation
method in a complicated way. In general, it is found that if the Debye length,
Ad ~ 6z/2, the numerical instabilities are almost entirely absent both for drifting
and stationary plasmas because modes with the largest wavenumber, kma=~z * 1
are heavily Landau damped. For large 6Z the incorrect of damping on the aliases
can overcome the physical Landau damping at kmaz and hence can cause strong
instability. The addition of strong smoothing at large k can alleviate these effects
somewhat.

The properties of the numerical instabilities depend on the details of the par-
ticular differencing scheme. H. 1?. Lcwis[1970] has suggested a differencing scheme
derived from the system Hamiltonian that conserves energy in the limit of bt -0.
The on] y difference from the method described above that conserves momentum
exactly but not energy is that E is defined at the cell edge and the particle velocities
are advanced with the NGP method. As one might expect, the method is some-
what noisier than the usual method and, in practice, does not conserve energy well
because of the finite dt. If, however, one introduces smoothing on the charge den-
sity, the two methods conserve energy about equally well. For the physically stable
case of a Maxwellian electron plasma drifting through a fixed ion background on a
uniformly space Cartesian grid with periodic boundary conditions, we compare the
stability properties [Lindman, 1970; Langdon, J970a,1970b; Okuda, 197Pj of the
two methods. The energy conserving method is stable for zero drift while the mo-
mentum conserving method is not. For drift velocities about equal to the electron
thermal speed, the energy conserving method becomes unstable and the growth
rate of the momentum conserving method diminishes sharply. For 6Z = 10A~, the
maximum growth rates in both cases are about 0.02wPat k~d = .16. For smaller
grid size the growth rate drops off sharply.

7. Two Dinmnsiona] Electromagnetic Codes

7.1 Units

We now discuss the basic difference equations for clmtromagnetic plasma simu-
lation in two dimensions. Before considering the difference equations, let us first
discuss the system of units used in the two dimensional WAVE codc[itforse and
Nielson, 197/]. We find it useful to normalize the density to some charge density,
nO, the charge to mass ratio to some qO/rnO and velocities to the speed of light.
‘rime then is normalized to w}, = (4nnOq~/mO) 1/2, the cdectric and magnetic fields
arc in unit~ of (47rn.,,mOcz) llZ and the potentials in units of mOc2/qo. Maxwell’s
equations then have no numerical factors and are dimensionless. S~veral addi-
tional nontrivial advantagm result from Lhis system of units. Thp equations arc
automatically ordered so that one can compare lhc size of various terms. Also, the



dimensionless equations imp]y that. a given simulat iol) is Lhr sohltion 10 a W]IO]V
class of’ physical problems that. are scaled by the units of time and Iields. This re-
duces the Iikclihrmd of unnecessarily run~ing a who]e series of equivalcmt pmhh’ms.
lt is easy t.hcu to conver[ Lhc scaled units into the physical units of a problom of
interest. Doing this al the outset can shed considerable insight into the physics.

7.2 Field Equations

The interpolation techniques used in one dimension are immediately extended to
two dimensions. For simplicity we consider the case of a uniformly spared mesh in
which the particle is the same size as the cell spacing. Here the amount or charge
and current deposited into each cell is proportional to the area overlap in the cell,
hence the term “area weighting” or bilinear interpolation.

In the WAVE code the equations are written in term of the vector and scalar
potentials for historical reasons. Langdon and Lasinski 11976] have shown that
an E and B based code has essentially identical properties provided the equltions
are d ifferenced properI y. Although an explicit wave equation SOIUt ion exists in the
WAVE code, we describe here the difference equations that allow for fit to excmwl
the Courant limit by controlling the high frequencies allowed in the system~A’i4scw~
and Lindman, 197~. The equations for Ampere’s Law and Faraday’s Law give rise

to the wave equation for A-:

- (1 + /lD2V2)(A=I’2 -- 2/0/2+ ~-’12)/c2(&)2 =

where

and

Ji’j+] ~ – 2fIj,~ + &i’j-] ~ , ij,~+ ] – 2A”j,~V2Z = —L– .—. ——--- —---!. -
(6X)2 (by)’

-.. . .— __;2=(1)’+(6:)2
and

(18)_4/2

+ ij-~ . I.— -- .-—. (19)

[20)

(21)

The superscripts indicate the time Icvels of the various t~rms. These equations,

k
~f cour6e, are solved for the 3 2 time level using the earlier values as in~’ut. ‘rhe
parameter 19 is used to alter t e dispersion relation so that timcsteps larger than
the Courant limit can bc used. The Coulomb gauge is used so that the transvcrm
current J-T, ia given by:

ap&=ui’v~. (22)

in order to guarantee that V. .~ = O and V” ~T = O so that charge is conserved at
each time step, we must ~olvc the auxiliary equation:

(23)



where ~ is at the whole time step and j“ is at the half time step and use thisc i3@/&

in Eq. (22). The fields ~ and E are computed by:

(24)

The electrostatic potential is obtained from

v%#’= pl (25)

All fields, charge and currents are defined at cell centers. Given the currents at the
half time step and the charge at the whole time step the fields can be advanced to
the nrxt whole time step with the vector potential being one half time step ahead.

The field equations are solved with a direct two dimensional Poisson solve. ‘l’he
method proceeds by Fast Fourier Transform in the y direction followed by Gaussian
elimination in the x direction on the linearly independent Fourier components.
The result is then Fourier transformed back to physical space. This allow for
arbitrary boundary conditions in x. General boundary conditions in y are oDtained
by choosing an appropriate set of basis functions for the FFT algorithm. l.loundary
conditions that have been implemented in the !. dirert.ion besides periodic include

Neumann and Dirichlet for A- and ~, Even more general boundary conditions ar.’
available in x.

7.3 P:lrt icle Equations

The particle vclocilios are kliown at AC half time step vvhilc f. l;, and~; arr known
at the whole time step. If wc drfine h = q/5t/rn, the c.cntcrccl form for the quation
of motion [Morse and ,VieLJon, f971j is:

Howrver, we do not yet know ti’, By using til = ~(@’2 + 17]12), we can SOIVP

‘Jz implicitly. We do this by taking the dot product and crossthis equation for v

product with l?]. The time centered reversible equation then is

If wc wish to kmp terms only to order (6/)2 wc can drop the last term. F~r thr
relativistic cquat iom a ~:imilar expression can be derived. The position advance-
ment is as it was in me dimcnsicm. m} vrlorit ics ilr(’ illtcrpolilfrd OI11O I 11Pgrid
at a position corrmpcmding to the adwmrr of one- half t irrw step to obtain J ‘/z.
The charges arc intwpolatcd on the grid at ttm whoh’ time step.



8. Implicit Techniqum
. .

8.1 Motivation

In studying the nonlinear propcrt;e~ of many plasma systems wc arc primarily
interested in the long time and long scale length plasma behavior. For example,
in collisioniess s] i)~k~ we frequent Iy arc int.crested in time scales long compared
to the ion gyro frequently and long compared to the ion gyro radius. For space
plasmas there are over 103 llehye lengths in an ion gyro radius and ov~r 104
plawna periods in an ion gyro period. To resolve all of these time and sparr
scales is prohibitive even with the next gmwraticm supercomputms. ‘1’hcru arr
some prn?dems in which the high frequm:cies and shori scale lengths ccwlmunicatc
effectively with the long wavelength fluctuations. 1. ..; is is the case, one cannot
make any ~ignificant si.nplificaticms. However, frequently the highest frequencies
and shortest scalelengths are not important for the c“o!ution of the long.st time
and space scales. Here ~everal solutiorw are possible.

A common techniques is to solve a reduced set of equations for onc 01 the
components of the plasma system, This is usually referred to aa a hybrid method.
There are a variety of hybrid models that have had considwable success in modeling
n wide variety of plasma phcrmmena. in recent years, however, implicit. techniques
have undergone considerable dcvclo mcntm~ljruck~ilfand Furslund, f9/?2; Friec%an,

ret af., 1982; Langdon, et al., 1989. By Implicit we mean that the equations are
solved backward in time from time level j + 1 to time level j. This results in a
decaying of the solutions that would be unstably growing in an explicit formulation.
A simple example of this was given ahcwe for 1he wavr equation solved in the two
dimensional electromagnetic code WA\”E, Although this technique is WCIIknown in
hydrodynamics and magnetohydrodynamics, it has only recently been found to hc
practical in plasma sinlu]aliont The diffku]ty arisrs ]J(l(’aUSet]wrc arc many nmrv
s~multaneous equations to be solved in the plasma system. If one were to have to
iterate on all of these equations togclher, the time would be prohihi~ ivc and tl::’rr
would be no advantage over simpler explicit methods.

8.2 Outline of Methods

There is not enough space here to discuss the details of the implicit rncthmls
which have been developed. Other papers in this volume will deal with fhi~ in
more detail as wi!l a forthcoming booh in the Computational Technique~ swim
by Academic Press entitled ‘T~mescalcsw to bc puldi~hrd in 1985. With sornc
ovcrsimplificaticm it can be stated that it has hccn found that one does not havr
to iterate the simultaneous sel of equalionn together to obtain a stablo amuratc
tiystcm. There are several approachcw to thi~ proldwn, but with a modified set of
equations for the particles and fields one can obtain a #table system. For example,
in the moment method lA41isonJ

/
f98f; flenavil, f9fFJ a fluid-likr dmcription of

the plasma is solved for implicitly with convcntiona implicit techniques, The
particles then arc advanced with these new fklds and used to correct the momrnt~
which were obtained from ,thc fluid-like trmtmcnt. At W’ Rtinw time thr implicit
solution of the fluid cquatlons over a large time step removw the high frrqmwcy
noise injected by the particle moments. Thu~ the two ~tilg~s wrvc to corrrrt. ~i~~ll
other. It has lmcn shown [Hrackhiil and Fmdumf, f98~ that this rc~ults in a
systematic elimination ~f the short wavelength and high frwpwnry wiiww in thr



system al!owing for large Lime and space steps. This method has lwcn particularly
successful in studying the self-consistcmt turbulence generated in magIIct ic shock
wavcs[ QWW, ei al., 1989; Forslund, et al., 3984]. The direct method IFriedman,
et al., 198~, Lmgdon, et al., 1989] which is derivca on more formal grtiunds has
similar properties to the moment method although all the differences have yet to bc
discussed in the literature. In some of the forrnulat.ions of these implicit methods
there are still some time and space step constraints which limit the application of
the method, although it is not clear if thmc arc in principle limitations or silnpIy
implcrmmtation limitations.

9. Problems solvod

The number of problems which have been solved by means of particle simulation
are too numerous to cite acc.umtcly in this limited space. However the range
has extended from space physics to laser fusion to magnetic confinement fusion,
from collisionless shock waves to parametric instabilities to elect.roll transport. For
example, an impoi-tant mechanism causing an anomalous resistivity in magnetic
shock waves has ueen identified with two dimensional implicit calculations with
the impli:it code, VENUS [Forshmd, ci af., 1994]. Magnetic field induced ekdron
triillSp(Jr[ on [he surface of !aser fusion targets was first dnxw~ered with plasma
simuiat.ion[i’orslund and 13rackbill,j981?].Most of the information known about
how energetic electrons are produced by intense laser light have been obtained by
plasma ~imu!ation[Forslund, et al., 197~. Recently in the area of particle amel-
eration by a beating between two light waves of diffcrel]t frequmcies, limitations
due to self-focusing, filamentation, back scattering and nmgnutic field gwmration
have all been identified in simulation before they could be observed expcrimen-
tally [Joshi, et aim, JO#4].Frequent.ly the rtwults from simulations were urmxprct cd
but are easily understood in simple tcrrns once they are known. This haq been
a typical path of rmcarch in plasllm simulation, a field which ha~ only brgun to
develop.
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